OCHRE: The Object-oriented, Controllable, High-resolution Residential Energy Model for Dynamic Integration Studies
Michael Blonsky,
Jeff Maguire,
Killian McKenna,
Dylan Cutler,
Sivasathya Pradha Balamurugan and
Xin Jin
Applied Energy, 2021, vol. 290, issue C, No S0306261921002464
Abstract:
Electrification and the growth of distributed energy resources (DERs), including flexible loads, are changing the energy landscape of electric distribution systems and creating new challenges and opportunities for electric utilities. Changes in demand profiles require improvements in distribution system load models, which have not historically accounted for device controllability or impacts on customer comfort. Although building modeling research has focused on these features, there is a need to incorporate them into distribution load models that include DERs and can be used to study grid-interactive buildings. In this paper, we present the Object-oriented, Controllable, High-resolution Residential Energy (OCHRE) model. OCHRE is a controllable thermal-electric residential energy model that captures building thermal dynamics, integrates grid-dependent electrical behavior, contains models for common DERs and end-use loads, and simulates at a time resolution down to 1 minute. It includes models for space heaters, air conditioners, water heaters, electric vehicles, photovoltaics, and batteries that are externally controllable and integrated in a co-simulation framework. Using a proposed zero energy ready community in Colorado, we co-simulate a distribution grid and 498 all-electric homes with a diverse set of efficiency levels and equipment properties. We show that controllable devices can reduce peak demand within a neighborhood by up to 73% during a critical peak period without sacrificing occupant comfort. We also demonstrate the importance of modeling load diversity at a high time resolution when quantifying power and voltage fluctuations across a distribution system.
Keywords: Residential energy modeling; Distributed energy resources; Building-to-grid co-simulation; Distribution load models (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921002464
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002464
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116732
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().