EconPapers    
Economics at your fingertips  
 

Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage

Jia Liu, Xi Chen, Hongxing Yang and Kui Shan

Applied Energy, 2021, vol. 290, issue C, No S0306261921002488

Abstract: This study presents hybrid renewable energy systems integrated with stationary battery and mobile hydrogen vehicle storage for a zero-energy community consisting of campus, office and residential buildings based on practical energy use data and simulations. A time-of-use grid penalty cost model evaluating grid import and export during on-peak and off-peak periods is proposed to achieve the power grid flexibility and economy. Multi-objective optimizations are conducted to size zero-energy buildings and the community considering the renewable energy self-consumption, on-site load coverage and grid penalty cost in the coupled platform of TRNSYS and jEplus+EA. The study results indicate that battery storage improves the renewable energy self-consumption, load coverage, hydrogen system efficiency and grid integration of the zero-energy community. Grid penalty cost reductions of 145.36% − 158.92% and 135.05% − 164.41% are achieved in zero-energy scenarios with and without battery storage compared with baseline scenarios without renewable energy. The lifetime net present value of four zero-energy scenarios with battery storage is increased by 22.39% − 96.17% compared with baseline scenarios, while it is reduced by 6.45% of US$ 7.62M and 1.90% of US$ 2.16M in zero-energy campus and residential buildings without battery storage. Substantial environmental benefits are also achieved in zero-energy scenarios with and without battery storage for reducing carbon emissions by 71.23% − 90.93% and 67.57% − 91.36%, respectively. Such a comprehensive techno-economic-environmental feasibility study can offer significant guidance for relative stakeholders to develop renewable energy applications for zero-energy buildings and communities in urban areas.

Keywords: Solar photovoltaic; Wind turbine; Battery storage; Hydrogen vehicle; Zero-energy community (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921002488
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002488

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116733

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002488