A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation
Hao Xie,
Bendong Yu,
Jun Wang and
Jie Ji
Applied Energy, 2021, vol. 291, issue C, No S0306261921002932
Abstract:
Trombe wall is a simple and mature passive solar building design while its utilization of solar energy is limited to space heating. Aerosol transmission, as a potential transmission pathway of COVID-19, poses a serious threat to the public health especially in a closed indoor environment. The thermal disinfection of virus, which can be easily integrated into solar systems, seems to be a suitable method for controlling bioaerosols. Therefore, a novel disinfected Trombe wall for virus inactivation and space heating is proposed, providing a potential way to fight the current COVID-19 pandemic. After the proposal of the concept, its performance on space heating and virus inactivation was investigated through experimental and simulation methods. The main results were as follows: (1) The average thermal efficiency was 0.457 and the average indoor temperature was 20.7 ℃, 1.9 ℃ higher than the ambient temperature. (2) The maximum single-pass inactivation ratio was 0.893, 0.591 and 0.893 while the total production of clean air was 112.3, 63.8 and 114.7 m3 for SARS-CoV-1, SARS-CoV-2 and MERS-CoV, respectively. (3) The increase of ambient temperature or solar irradiance may enhance the thermal efficiency while the former has little effect on the thermal disinfection process. (4) Extending the height or narrowing the thickness of the duct by 40% may contribute to an increase in total production of clean air by 510 m3 or 681 m3 per unit area during the heating seasons, but the later may cause a larger decrease (about 8%) in the heat gain of indoor air.
Keywords: Trombe wall; COVID-19; Thermal disinfection; Space heating; Solar energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921002932
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:291:y:2021:i:c:s0306261921002932
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116789
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().