Design and optimization of a liquid cooled heat sink for a motor inverter in electric vehicles
Feng Han,
Hong Guo and
Xiaofeng Ding
Applied Energy, 2021, vol. 291, issue C, No S0306261921003196
Abstract:
The rapid development of power electronic devices has made them have higher power density, which puts forward higher requirements for cooling technology. The contribution of this paper is the integrated design of the liquid cooled heat sink for a 30 kW motor inverter considering the distribution of power devices. In order to find an optimal heat sink configuration, the cooling performance of three different configurations of heat sinks was investigated. And the distribution characteristics of the temperature and fluid velocity field were compared and analyzed. The heat sink with serpentine channel configuration was selected due to its best temperature uniformity and cooling characteristic. In addition, the effects of geometric parameters (fin thickness) and flow parameters (flow rate) on cooling performance were further studied. On this basis, the geometrical configuration of the heat sink was optimized. The experimental results of the optimized heat sink are in good agreement with the numerical simulation results. The motor inverter achieves high power density of 9.677 kW/kg.
Keywords: Electric vehicles; Motor inverter; Liquid cooling; Heat sink; Temperature (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003196
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003196
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116819
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().