An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power
Chen Wang,
Siu-Kai Lai,
Jia-Mei Wang,
Jing-Jing Feng and
Yi-Qing Ni
Applied Energy, 2021, vol. 291, issue C, No S0306261921003251
Abstract:
This work presents a highly miniaturized, ultra-low-frequency, multi-stable and tri-hybrid portable energy harvester to harness structural and biomechanical vibration energy efficiently. This energy harvester is developed by using a novel multi-stability-based frequency up-converted approach, in which two new configurations of magneto-multi-stable oscillators are closely integrated. Hence, the displacement stroke of low-frequency vibration and the mechanical energy transfer process can almost completely overlap, and consequently magnify the power output and power density under low-frequency broadband vibration sources. By hybridizing two impact-driven piezoelectric generators, an array-type electromagnetic generator, a sliding-mode triboelectric nanogenerator and a contact-separation triboelectric nanogenerator in a highly compact design arrangement, more electric power can be generated from a single mechanical motion, which can successfully enhance the output performance. A fabricated prototype of the present design is tested using shaker excitations and body-induced motions. Under the shaker test, the prototype works well at a wide bandwidth of 1–11 Hz under 1 g (=9.8 m s−2) and generates a maximum output power of 85.9 mW across the optimum resistance loads, corresponding to the normalized power density of 3.70mW cm-3g-2 at 3 Hz under 1 g. During the human activity motions (i.e., walking, slow running, and handshaking), the prototype also shows good performance under different wearable positions of the human body and can power up 20 thermohygrometers and 296 commercial light-emitting diodes continuously. The present energy harvester is a promising application to enable as a sustainable power source for wearable/portable electronics and wireless monitoring systems.
Keywords: Tri-/quad-stable nonlinearity; Tri-hybrid harvester; Frequency up-conversion; Structural vibration; Biomechanical energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003251
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003251
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116825
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().