EconPapers    
Economics at your fingertips  
 

Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems

Yusheng Zhang, Chao Ma, Yang Yang, Xiulan Pang, Lu Liu and Jijian Lian

Applied Energy, 2021, vol. 291, issue C, No S0306261921003287

Abstract: Formulating an optimal operation strategy is a real challenge in the actual operation stage of a hybrid system. This study presented a research framework for determining the short-term optimal operation strategy for cascade hydro-photovoltaic hybrid system. First, a method was presented for describing the cascade hydro-photovoltaic hybrid system net load utilizing the daily average net load and fluctuation coefficient. Second, a model was established for the short-term optimal operation of the cascade hydro-photovoltaic hybrid system. Then, a synchronous peak-shaving strategy of cascade hydropower stations was proposed based on the fluctuation coefficient. Finally, the framework was applied to a case study in the Qinghai Province, China. The results showed an obvious competitive relationship between the two objectives. In the hybrid system, the peak-shaving task is mainly carried out by a daily regulation hydropower station, while its base-load task is jointly carried out by runoff and daily regulation hydropower stations. When the average daily runoff is less than 30% of the hydropower rated flow, the cascade hydro-photovoltaic hybrid system should bear single-peak load on sunny, cloudy, and dusty days, otherwise, it should bear double-peak load. It should bear double-peak load under different daily average runoffs on rainy and snowy days. After the cascade hydropower relative position was interchanged, the cascade hydropower overall peak-shaving capability decreased. Thus, the above results prove the feasibility of the research framework, and it provides a reference for the short-term operation of cascade hydro-photovoltaic hybrid system.

Keywords: Hydro-photovoltaic; Short-term operation; Synchronous peak-shaving; Complementary role; Power gird role; Relative position (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003287
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003287

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116828

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003287