Framework for optimization of long-term, multi-period investment planning of integrated urban energy systems
Iris van Beuzekom,
Bri-Mathias Hodge and
Han Slootweg
Applied Energy, 2021, vol. 292, issue C, No S0306261921003664
Abstract:
In order to achieve stringent greenhouse gas emission reductions, a transition of our entire energy system from fossil to renewable resources needs to be designed. Such an energy transition brings two main challenges: most renewables generate variable electric energy, yet most demand is currently not electric (carrier mismatch) and does not always manifest at the same time as supply (temporal mismatch). Integrating multiple energy infrastructures can address both challenges by using the synergy between different energy carriers; building on existing infrastructure, while allowing a robust and flexible integration of the new.
Keywords: Mixed-integer linear optimization; Investment planning; Integrated energy systems; Climate policy; Facility location network design (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003664
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003664
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116880
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().