Coupled optical-electrical-thermal analysis of a semi-transparent photovoltaic glazing façade under building shadow
Jing Wu,
Ling Zhang,
Zhongbing Liu and
Zhenghong Wu
Applied Energy, 2021, vol. 292, issue C, No S030626192100372X
Abstract:
The semi-transparent photovoltaic glazing (STPVG) façade can introduce comfortable daylight into the indoor space and achieve energy efficiency, which is a promising PV glazing façade system. However, it is susceptible to building shadow, reducing power generation efficiency. This paper established a coupled optical-electrical-thermal model under dynamic changing building eave shadow of the STPVG façade and built a full-scale experiment platform to test and verify the coupled model. The model was then used to simulate and analyze the electrical performance and the temperature distribution of the STPVG under different eave shadow. The results show that the I/V curve appears multi-knee shape and the P/V curve appears multi-peak shape due to the different shadow coefficient in each PV string. Furthermore, the annual overall energy performance of STPVG in Changsha, China was compared with different eave width. The transmitted solar radiation, the energy generation and energy conversion efficiency, and the total heat gain decrease with the eave width increases in the months when the shadow appears. When the eave width is 0.29 m, the monthly largest transmission loss rate is in May at 3.86%; the largest energy generation loss rate is in April at 15.3%; and the largest indoor heat gain reduction rate is in August at 3.28%. This study can provide theoretical guidance for the system optimization and engineering application of the STPVG in building energy conservation.
Keywords: Semi-transparent glazing façade; Building shadow; Three-dimensional heat transfer; Implicit finite difference; Optical-electrical-thermal simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192100372X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:292:y:2021:i:c:s030626192100372x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116884
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().