EconPapers    
Economics at your fingertips  
 

Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting

Tao Zhu, Richard G.A. Wills, Roberto Lot, Haijun Ruan and Zhihao Jiang

Applied Energy, 2021, vol. 292, issue C, No S0306261921004128

Abstract: The hybrid energy storage system (HESS) composed of batteries and supercapacitors (SCs) is a dual energy storage technology that can compensate for the shortcomings of a single energy storage technology acting alone. The energy management of HESS splits the power and energy demands from the electric vehicle (EV) to the battery and SC and thus is vital to EV propulsion. This paper presents an online energy management strategy (EMS) that optimises the operating costs of battery-SC HESS and can be adaptive to real-time EV driving conditions. We analyse the optimal offline benchmarks to guide online EMS design and propose the adaptive online EMS with variable perception horizon based on both neural network and rule-based techniques. Compared with existing research, the proposed EMS features reduced complexity, flexible perception and intelligent rulemaking. Case study results show that the proposed variable perception horizon and neural network fitting can improve EMS optimality compared with the conventional methods in existing research. The proposed EMS can realise more than 97% cost optimisation efficacy of offline benchmarks. By the proposed EMS, this paper is expected to provide a practical and effective energy management approach for the battery-SC HESS to reduce costs in EV applications.

Keywords: Electric vehicle; Hybrid energy storage system; Energy management; Cost optimisation; Variable perception horizon; Neural network fitting (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921004128
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:292:y:2021:i:c:s0306261921004128

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.116932

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:292:y:2021:i:c:s0306261921004128