Frequency regime dependent figures of merit and optimization guidelines for maximizing pyroelectric power output
Joshua D. Wilbur and
Chris Dames
Applied Energy, 2021, vol. 293, issue C, No S0306261921003585
Abstract:
Traditionally, pyroelectric energy conversion research has focused on improving energy output per cycle between fixed temperature bounds; however, most end-uses have fixed power, not energy, demands. Here, we analyze pyroelectric energy harvesting systems through the lens of maximizing power output, focusing specifically on the oft-overlooked details of the average temperature amplitude of the pyroelectric material which can be far smaller than the temperature amplitude of the available thermal resource. We describe this average temperature amplitude as a function of thermophysical properties, geometry, and other system variables for two different types of thermal energy sources. Ultimately, we identify figures of merit (FOMs) for locally improving the power harvesting performance within each of three distinct frequency regimes, as well as provide guidance for maximizing the power harvesting performance under certain constraints. This combination of FOMs and maximization guidance will aid in the future design and optimization of pyroelectric energy harvesting systems.
Keywords: Pyroelectric; Pyroelectricity; Energy harvesting; Energy conversion; Energy scavenging (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003585
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:293:y:2021:i:c:s0306261921003585
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116868
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().