N-BEATS neural network for mid-term electricity load forecasting
Boris N. Oreshkin,
Grzegorz Dudek,
Paweł Pełka and
Ekaterina Turkina
Applied Energy, 2021, vol. 293, issue C, No S0306261921003986
Abstract:
This paper addresses the mid-term electricity load forecasting problem. Solving this problem is necessary for power system operation and planning as well as for negotiating forward contracts in deregulated energy markets. We show that our proposed deep neural network modeling approach based on the deep neural architecture is effective at solving the mid-term electricity load forecasting problem. Proposed neural network has high expressive power to solve non-linear stochastic forecasting problems with time series including trends, seasonality and significant random fluctuations. At the same time, it is simple to implement and train, it does not require signal preprocessing, and it is equipped with a forecast bias reduction mechanism. We compare our approach against ten baseline methods, including classical statistical methods, machine learning and hybrid approaches, on 35 monthly electricity demand time series for European countries. The empirical study shows that proposed neural network clearly outperforms all competitors in terms of both accuracy and forecast bias. Code is available here: https://github.com/boreshkinai/nbeats-midterm.
Keywords: Mid-term load forecasting; Neural networks; Deep learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003986
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:293:y:2021:i:c:s0306261921003986
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116918
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().