Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material
Arash Kazemian,
Meysam Khatibi,
Seyed Reza Maadi and
Tao Ma
Applied Energy, 2021, vol. 295, issue C, No S0306261921003500
Abstract:
In this study, a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material is numerically simulated using a transient three-dimensional model. Aluminum oxide nanoparticles are dispersed into both the heat transfer fluid, which is water, and the Rubitherm series of organic phase change material. Response surface methodology is applied to gain a predictive model for estimating the behavior of the system in terms of four different design parameters of phase change material layer thickness, heat transfer fluid mass flow rate, and the mass fraction of nanoparticles through the phase change material and working fluid. The relationships between the mentioned parameters and responses, including electrical and thermal power, exergy, and entropy generation along with their interaction impacts on system performance are obtained. Finally, employing single and multi-objective optimization, different scenarios are defined to optimize the system based on the designer’s goals. The results reveal that the dispersion of nanoparticles within the heat transfer fluid leads to a better improvement in photovoltaic thermal system performance compared to its addition to the phase change material. Based on the multi-objective optimization method to maximize electrical and thermal exergies, simultaneously, results show the best electrical and thermal exergies of the system can be achieved to 135.92 and 2.44 W/m2, respectively.
Keywords: Single and multi-objective optimization; Nano-enhanced phase change material; Response surface method; Prediction; Photovoltaic thermal system; Nanofluid (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921003500
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:295:y:2021:i:c:s0306261921003500
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.116859
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().