EconPapers    
Economics at your fingertips  
 

Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress

Seyed Hashem Mousavi-Avval and Ajay Shah

Applied Energy, 2021, vol. 297, issue C, No S0306261921005468

Abstract: There is a growing interest in making the overall aviation industry more environmentally-friendly by developing advanced biofuels. In this context, the main driver is establishing feedstocks with lower environmental loads and higher energy use efficiency. The objective of this study was to evaluate the energy requirement and environmental impacts of hydroprocessed renewable jet fuel (HRJ) production from pennycress. The system boundary included pennycress production, logistics, oil extraction and conversion to HRJ, wastewater treatment, and electricity and steam generation. Energy allocation method was used for the analysis. The functional unit was considered to be one GJ of HRJ, and the biorefinery size was considered to be 18.9 million l/yr (5 million gal/yr) HRJ. Energy use efficiency of pennycress-based HRJ production was estimated to be 3.9–5.5 (90% central range), which was higher than that of HRJ from other oilseeds, such as canola. Global warming potential of pennycress-based HRJ (35–49 kgCO2eq/GJ of HRJ (90% central range)) was also lower than those of HRJ from similar oilseeds and the commercial jet fuel baseline. Pennycress production was the main contributor to the total energy use and environmental impacts of HRJ production, mainly due to the use of nitrogen fertilizer for production, and fuel combustion for farm operations. Pennycress yield was identified as the most sensitive parameter affecting the energy use efficiency and environmental impacts of HRJ production. The outcomes of this study are useful for identifying the performance targets towards improving energy use efficiency and environmental performance of pennycress-based HRJ production at the commercial scale.

Keywords: Aviation biofuel; Sustainable feedstock supply; Oilseeds; Life cycle assessment; Uncertainty analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921005468
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:297:y:2021:i:c:s0306261921005468

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117098

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:297:y:2021:i:c:s0306261921005468