EconPapers    
Economics at your fingertips  
 

Investigation on in-situ water ice recovery considering energy efficiency at the lunar south pole

Hongqing Song, Jie Zhang, Dongdong Ni, Yueqiang Sun, Yongchun Zheng, Jue Kou, Xianguo Zhang and Zhengyi Li

Applied Energy, 2021, vol. 298, issue C, No S0306261921005766

Abstract: It is of great significance to realize the in-situ utilization of lunar water ice for the establishment and sustainable operation of the future lunar base. Considering the location of water ice in the lunar polar regions, based on the in-situ thermal mining method, an integrated approach for the water ice recovery was established. The evolution characteristics of average temperature of the icy soil and water vapor collection rate with the mining time were analyzed. The optimal mining temperature for the recovery of water ice was studied. The energy efficiency under various arrangement densities of heating elements was assessed with the optimal number of heating elements determined. The results show that as the mining time increases, for different target mining temperatures, the average temperature of the icy soil rapidly rise at first, and then tend to stabilize. The water vapor collection rates at different target mining temperatures vary greatly due to the difference in saturated vapor pressure of water ice. At high mining temperatures, the sublimation coefficient also significantly affects the process of water vapor collection. The water vapor collection rate with sublimation coefficient being unity is up to 36% larger than that with non-constant sublimation coefficient for the lunar soil under investigation within four earth weeks at the target mining temperature of 240 K. In addition, the increase of the mining temperature increases the water vapor collection rate, and at the same time, the water vapor pressure in the capture tent also increases, which may lead to the instability of the water ice production system. Combining with water vapor collection rate and change rate of water vapor pressure in the capture tent, the temperature of 220 K is obtained as the optimal target mining temperature. Furthermore, for the lunar soil in this work, the energy efficiencies for water ice production with seven and nine heating elements are same, and greater than that with five heating elements. Considering the energy efficiency, the minimum number of heating elements could be determined.

Keywords: Lunar water ice; In-situ utilization; Energy efficiency; Thermal mining; Sublimation rate (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921005766
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005766

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117136

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005766