Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality
Ming Ren,
Pantao Lu,
Xiaorui Liu,
M.S. Hossain,
Yanru Fang,
Tatsuya Hanaoka,
Brian O'Gallachoir,
James Glynn and
Hancheng Dai
Applied Energy, 2021, vol. 298, issue C, No S0306261921006334
Abstract:
Iron and steel production in China contributes to 14% of China’s total energy-related CO2 emissions. Decarbonizing the iron and steel sector will therefore play an important role in achieving the goal of carbon neutrality. This study explored possible low-carbon transition pathways for China’s iron and steel industry to achieve carbon neutrality by 2050. An integrated approach was developed that combined a computable general equilibrium model and a bottom-up technology-selection module. The results indicated that although energy-saving technologies can reduce CO2 emissions in the short term, in the long term, adopting breakthrough technologies (e.g., carbon capture and storage (CCS) and hydrogen-based direct reduction (DR)), increasing the share of scrap-based electric arc furnace (EAF) steel production, and decarbonizing upstream energy-supply sectors will be crucial for climate change mitigation. Hydrogen-based DR could be an effective option for CO2 emission reduction in scenarios where CCS is not available, with its share increasing to 23%–25% by 2050. System-wide cross-sector decarbonization can help achieve climate targets at lower costs through flexible technology combinations and avoid carbon leakage into upstream energy-supply sectors.
Keywords: Iron and steel industry; Direct reduction iron; Carbon capture and storage; IMED model; Cross-sector decarbonization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921006334
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006334
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117209
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().