Replacing liquid fossil fuels and hydrocarbon chemical feedstocks with liquid biofuels from large-scale nuclear biorefineries
C.W. Forsberg,
B.E. Dale,
D.S. Jones,
T. Hossain,
A.R.C. Morais and
L.M. Wendt
Applied Energy, 2021, vol. 298, issue C, No S0306261921006486
Abstract:
Liquid fossil fuels (1) enable transportation and (2) provide energy for mobile work platforms and (3) supply dispatchable energy to highly variable demand (seasonal heating and peak electricity). We describe a system to replace liquid fossil fuels with drop-in biofuels including gasoline, diesel and jet fuel. Because growing biomass removes carbon dioxide from the air, there is no net addition of carbon dioxide to the atmosphere from burning biofuels. In addition, with proper management, biofuel systems can sequester large quantities of carbon as soil organic matter, improving soil fertility and providing other environmental services. In the United States liquid biofuels can potentially replace all liquid fossil fuels. The required system has two key features. First, the heat and hydrogen for conversion of biomass into high-quality liquid fuels is provided by external low-carbon energy sources--nuclear energy or fossil fuels with carbon capture and sequestration. Using external energy inputs can almost double the energy content of the liquid fuel per unit of biomass feedstock by fully converting the carbon in biomass into a hydrocarbon fuel. Second, competing effectively with fossil fuels requires very large biorefineries—the equivalent of a 250,000 barrel per day oil refinery. This requires commercializing methods for converting local biomass into high-density storable feedstocks that can be economically shipped to large-scale biorefineries.
Keywords: Biofuels; Nuclear energy; Depots; Pyrolysis oil; Renewable natural gas (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921006486
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006486
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117225
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().