EconPapers    
Economics at your fingertips  
 

Optimal planning of a rooftop PV system using GIS-based reinforcement learning

Seunghoon Jung, Jaewon Jeoung, Hyuna Kang and Taehoon Hong

Applied Energy, 2021, vol. 298, issue C, No S0306261921006607

Abstract: This study aimed to develop a geographic information system (GIS)-based reinforcement learning (RL) model for optimal planning of a rooftop PV system, considering the uncertainty of future scenarios throughout the life cycle of buildings. To that end, GIS was used to establish the spatial data for the rooftop PV installation, and an RL model was developed to maximize the economic profit of the rooftop PV installation in various locations and future scenarios. The developed model was applied to residential buildings in Nonhyeon district, South Korea to evaluate their economic profitability and to compare the model with the existing planning methods. With the use of the developed GIS-based RL model, the rooftop PV system became economically feasible, achieving average economic profit of 539,197 USD over all scenarios for all target buildings which was higher than that of the existing models by 4.4% and 4.3%. Furthermore, the developed model outperformed the existing models especially in volatile scenarios with lower solar radiation. Therefore, the use of the proposed GIS-based RL model can optimize the economic feasibility of rooftop PV systems for buildings, which will benefit building owners and community-level energy business owners. In conclusion, the developed model can promote the adoption of rooftop PV systems, which have 91.8% lower global warming potential than the Korean mixed grid, without additional subsidies to achieve Korea’s national CO2 emission reduction plan.

Keywords: Rooftop PV; PV planning; Geographic information system; Reinforcement learning; Economic profitability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921006607
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006607

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117239

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006607