A hybrid solution for offshore wind resource assessment from limited onshore measurements
Basem Elshafei,
Alfredo Peña,
Dong Xu,
Jie Ren,
Jake Badger,
Felipe M. Pimenta,
Donald Giddings and
Xuerui Mao
Applied Energy, 2021, vol. 298, issue C, No S0306261921006656
Abstract:
In wind resource assessments, which are critical to the pre-construction of wind farms, measurements by LiDARs or masts are a source of high-fidelity data, but are expensive and scarce in space and time, particularly for offshore sites. On the other hand, numerical simulations, using for example the Weather Research and Forecasting (WRF) model, generate temporally and spatially continuous data with relatively low-fidelity. A hybrid approach is proposed here to combine the merit of measurements and simulations for the assessment of offshore wind. Firstly a temporal data fusion using deep Multi Fidelity Gaussian Process Regression (MF-GPR) is performed to combine the intermittent measurement and the continuous simulation data at an onshore location. Then a spatial data fusion using a neural network with Non-linear Autoregression (NAR) and Non-linear Autoregression with external input (NARX) are conducted to project the wind from onshore to offshore. The numerical and measured wind speeds along the west coast of Denmark were used to evaluate the method. We show that the proposed data fusion technique using a gappy onshore measurement results in accurate offshore wind resource assessment within a 2% margin error.
Keywords: Artificial neural network; Gaussian process regression; Spatiotemporal data fusion; Wind resource assessment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921006656
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006656
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117245
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().