Retraining prior state performances of anaerobic digestion improves prediction accuracy of methane yield in various machine learning models
Jun-Gyu Park,
Hang-Bae Jun and
Tae-Young Heo
Applied Energy, 2021, vol. 298, issue C, No S030626192100670X
Abstract:
The prediction of anaerobic digestion (AD) performance using numerical models, which are based on mathematics and kinetics, is being challenged by poor mechanistic understanding and the non-linear relationships between performance and operational parameters. This study demonstrated that various machine learning (ML) models using the 1-step ahead with the retraining method, which utilized AD performance data from prior states, can improve the prediction accuracy of ML models. For the four types of ML models studied, the 1-step ahead with the retraining method could improve the root mean square errors by 32–49% compared to the conventional multi-step ahead method, which was particularly noteworthy during the transition period when AD reactors were faced with loading shocks and showed inhibited methane yields. Moreover, the 1-step ahead with the retraining method showed the potential of achieving accurate predictions using a single input parameter, pH, which was considerably less labor-intensive to monitor than the other parameters often required in AD models (e.g., VSS). As such, the 1-step ahead with retraining method is suitable for efficient real-time prediction of AD performance in real-world operations.
Keywords: Machine learning; 1-step ahead; Retraining; Anaerobic digestion; Methane yield; pH (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192100670X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:298:y:2021:i:c:s030626192100670x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117250
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().