A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework
Jieyang Peng,
Andreas Kimmig,
Zhibin Niu,
Jiahai Wang,
Xiufeng Liu and
Jivka Ovtcharova
Applied Energy, 2021, vol. 299, issue C, No S0306261921007315
Abstract:
Understanding urban demand profiles is an important determinant for energy dispatch and the optimization of the electric energy supply. For the design of the energy supply system, an important consideration is, to express the characteristics of urban household energy demand as a function of space and time. However, the focus of most research activities is only on the modeling of time series data. High-resolution forecasting models for the spatial–temporal distribution of energy were rarely reported in current literature. In this paper, we propose a spatio-temporal forecasting model based on potential-flow for urban energy demand forecasting. Compared with previous studies, potential-flow can describe energy migration in space with a high resolution. Based on the orientation of vectors, our model can predict the direction and intensity of spatial migrations in energy demand and identify energy transfer events. Extensive experiments on real-world data sets verify that our approach can achieve a better prediction accuracy compared with traditional methods. In further empirical studies, we find that the temporal electricity demand flow shows locally concentrating behavior for different regions of the city. In addition to temporal factors such as seasons, peaks and valleys, such clustering behavior also depend on local populations and major industries (financial, commercial, residential, etc.). Finally, we use entropy to quantitatively describe the intensity of this clustering phenomenon and explore its relationship with meteorological factors. Our research demonstrates a unified visual prediction approach to support exploratory demand analysis. We anticipate that the process will be expanded to support more forms of energy in the future.
Keywords: Urban energy; Spatio-temporal demand forecasting; Visual analysis; Spatial mapping; Pattern recognition (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007315
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007315
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117321
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().