Heat exchanger design: Optimal thickness (under natural convective conditions) of vertical rectangular fins protruding upwards from a horizontal rectangular base
C.W. Leung and
S.D. Probert
Applied Energy, 1988, vol. 29, issue 4, 299-306
Abstract:
Steady-state rates of heat transfer from an array of vertical, rectangular polished duralumin fins under natural convective conditions have been measured. The horizontal base, which was manufactured of the same material, was kept at the uniform temperature of either 20·0 (±0·2)°C or 40·0 (±0·2)°C above the local air temperature of 20 (±0·2)°C. The optimal thickness of the fins in this array, corresponding to a maximum rate of heat dissipation, was deduced. For a base of width 190 mm and length 500 mm, the optimal thickness for fins of 60 mm protrusion rose from 2·0 mm to 4·5 mm when the fin separation was increased from 20 mm to 60 mm. This optimal fin thickness was almost invariant with respect to the change of the considered base temperature.
Date: 1988
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0306-2619(88)90040-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:29:y:1988:i:4:p:299-306
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().