Exergy-based modeling framework for hybrid and electric ground vehicles
Federico Dettù,
Gabriele Pozzato,
Denise M. Rizzo and
Simona Onori
Applied Energy, 2021, vol. 300, issue C, No S0306261921007248
Abstract:
Exergy, or availability, is a thermodynamic concept representing the useful work that can be extracted from a system evolving from a given state to a reference state. It is also a system metric, formulated from the first and the second law of thermodynamics, encompassing the interactions between subsystems and the resulting entropy generation. In this paper, an exergy-based analysis for ground vehicles is proposed. The study, a first to the authors’ knowledge, defines a comprehensive vehicle and powertrain-level modeling framework to quantify exergy transfer and destruction phenomena for the vehicle’s longitudinal dynamics and its energy storage and conversion devices (namely, electrochemical energy storage, electric motor, and ICE). To show the capabilities of the proposed model in quantifying, locating, and ranking the sources of exergy losses, two case studies based on an electric vehicle and a parallel hybrid electric vehicle are analyzed considering a real-world driving cycle. This modeling framework can serve as a tool for the future development of ground vehicles management strategies aimed at minimizing exergy losses rather than fuel consumption.
Keywords: Exergy analysis; Ground vehicles; Simulations; Electrified vehicles (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007248
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007248
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117320
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().