Waste-to-bioethanol supply chain network: A deterministic model
Oseok Kwon and
Jeehoon Han
Applied Energy, 2021, vol. 300, issue C, No S0306261921007844
Abstract:
Bioethanol (bio-EtOH) is commonly used as a renewable biofuel additive for gasoline. A novel technology producing bio-EtOH from anaerobic digestion of organic waste (OW) has recently attracted attention. This work presents a deterministic mixed integer linear programming model for the optimal location of OW-based bio-EtOH biorefineries. The proposed model considers OW treatment location, bio-EtOH biorefineries, and truck transport links as a supply chain network (SCN) approach. The objective function of the developed model is to minimize the total bio-EtOH levelized cost (ELC) while satisfying the model constraints consisting of equalities (e.g., mass and energy balances for the bio-EtOH biorefinery) and inequalities (e.g., capacity of the bio-EtOH refinery, truck transport) to meet the regional demands of bio-EtOH. To validate the optimization model, a case study based on a real scenario for South Korea in 2030 was conducted for different bio-EtOH blending rates (E10, E20, E85, E100). The case study results indicate that ELC of E10 containing 10% bio-EtOH from OW products combined with gasoline is USD 3.65/gallon. As the blending rate of bio-EtOH increases, ELC increases to USD 4.36/gallon for E20, USD 8.99/gallon for E85, and USD 10.05/gallon for E100. The optimization results can help determine SCN strategies for an OW-based biofuel economy.
Keywords: Supply chain management; Biofuel; Facility location; Organic waste; Ethanol (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007844
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007844
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117381
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().