EconPapers    
Economics at your fingertips  
 

Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges

Peng Lu, Lin Ye, Yongning Zhao, Binhua Dai, Ming Pei and Yong Tang

Applied Energy, 2021, vol. 301, issue C, No S0306261921008369

Abstract: The integration of large-scale wind power introduces issues in modern power systems operations due to its strong randomness and volatility. These issues can be resolved via wind power forecasting that can provide comprehensive future information about wind power uncertainties. This paper presents a timely and comprehensive review of meta-heuristic algorithms in the framework of wind power forecasting. The framework is based on the auxiliary layer, forecasting base layer, and core layer. The auxiliary layer, such as the data-decomposition layer, decomposes the wind power time series into many relatively stationary subseries, and uses prediction models, including artificial neural networks (ANNs) and machine learning (ML). The core layer is based on meta-heuristic algorithms, which include evolutionary-based algorithms, physics-based algorithms, human-based algorithms, swarm-based algorithms, hybrid algorithms, and multi-objective optimization algorithms. These algorithms aim to search for the optimal solutions under constraints, which is highly significant for optimizing the key parameters of the prediction models. Besides, multiple error evaluation metrics, e.g., deterministic, uncertainty, and testing methods used in the field of wind power prediction are described. A quantitative analysis focusing on their advantages, disadvantages, forecasting accuracy, and computational costs are also provided. Finally, a few open research issues and trends related to the topic are discussed, which can contribute to improving the understanding of each wind power forecasting method. In general, this review paper provides valuable insights to wind power engineers.

Keywords: Meta-heuristic algorithms; Wind power forecasting; Combined approach; Multiple time horizons; Multiple error evaluation metrics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008369
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008369

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117446

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008369