Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection
Lifang Zhang,
Jianzhou Wang,
Xinsong Niu and
Zhenkun Liu
Applied Energy, 2021, vol. 301, issue C, No S0306261921008394
Abstract:
Wind energy is becoming increasingly competitive and promising for renewable energy profiles. Accurate and reliable wind speed prediction is crucial for the effective exploitation of wind energy. However, previous studies have generally ignored the importance of capturing both linear and non-linear wind speed characteristics and selecting forecasting sub-models objectively, resulting in poor forecasting performance. To bridge these gaps, a novel ensemble forecasting system is proposed by integrating the decomposition strategy, sub-model selection, and ensemble point and interval prediction based on the newly proposed multi-objective Archimedes optimization algorithm, which has been demonstrated to be effective at the theoretical and empirical levels for providing reliable wind speed forecasting results. Based on hourly-resolution wind speed data from three datasets of Shandong Peninsula, China, three experiments and discussions are conducted. Simulation results demonstrate that the proposed system is capable of obtaining a high degree of precision and reliability for both point and interval forecasting relative to other comparative models. Thus, it can provide credible references for power system dispatching and management.
Keywords: Ensemble wind speed forecasting; Multi-objective Archimedes optimization algorithm; Artificial intelligence; Sub-model selection (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008394
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008394
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117449
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().