Dynamic modelling based on surface renewal theory, model validation and process analysis of rotating packed bed absorber for carbon capture
Xiaobo Luo,
Meihong Wang,
Jonathan Lee and
James Hendry
Applied Energy, 2021, vol. 301, issue C, No S0306261921008515
Abstract:
Rotating packed beds can reduce the equipment size and costs in solvent-based carbon capture. However, difficulties are encountered when modelling rotating packed beds due to turbulent fluid flows inside rotating packed beds and the cross-sectional area of mass transfer unit that changes with radius. This study aims to develop a validated dynamic model of a rotating packed bed absorber and to carry out process analysis through steady state and dynamic simulations. Innovatively, the dynamic model was developed based on surface renewal theory for mass transfer. The model can calculate distributed mass transfer coefficients and other key variables related with absorption performance. Experiments were carried out and new experimental data for the rotating packed bed absorber under realistic operating conditions were obtained for model validation. Process analysis about the effects of key operational variables such as rotating speed, liquid-gas ratio and solvent concentration on absorption performance was performed with benchmark MEA solvent. It was found that the optimal MEA concentration is around 70 wt%. Dynamic simulation results reveal that the RPB absorber has fast responses for process changes. This new distributed dynamic model and the insights obtained through process simulation will promote rotating packed bed technology towards its industrial deployment in large scale carbon capture processes.
Keywords: Post-combustion carbon capture; Process intensification; Rotating packed bed; Surface renewal theory; Process modelling and simulation; Process analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008515
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008515
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117462
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().