Impact of the hybrid electric architecture on the performance and emissions of a delivery truck with a dual-fuel RCCI engine
Antonio García,
Javier Monsalve-Serrano,
Santiago Martinez-Boggio and
Patrick Gaillard
Applied Energy, 2021, vol. 301, issue C, No S0306261921008801
Abstract:
Reactivity controlled compression ignition combustion showed great advantages in terms of NOx and soot emissions reduction, leading to virtually zero emissions. However, the average brake thermal efficiency of this concept is like that found with conventional diesel operation. The powertrain electrification using electric motors and battery packages appears as a potential solution to reduce the CO2 emissions. For this reason, several solutions for the powertrain electrification can be found currently in the market as the parallel, series and power split powertrain architectures. The aim of this work is to evaluate the hybrid architecture impact on the fuel consumption and emissions of a delivery truck (Volvo-FL) intended for urban and urban–rural applications. The truck equipped with a reactivity-controlled compression ignition diesel-gasoline engine is evaluated and compared against the conventional diesel case. In addition, to evaluate the impact of new e-fuels on the well-to-wheel CO2 emissions, a synthetic gasoline coming from carbon capture and green electricity is evaluated. The results show that hybridization allows reducing the tank-to-wheel CO2 emissions above 15% with the parallel hybrid set-up. The series and power split architectures show CO2 benefits of 12% with respect to the baseline diesel non-hybrid case. Using synthetic gasoline as low reactivity fuel allows to achieve a 50% well-to-wheel CO2 reduction in the P2 and 70% well-to-wheel CO2 reduction for the series and power split cases due to the higher average gasoline fraction used in the driving cycle.
Keywords: E-Components; Mild hybrid; Dual-fuel; Emissions regulations; Driving cycles (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008801
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008801
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117494
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().