EconPapers    
Economics at your fingertips  
 

A delay-tolerant distributed optimal control method concerning uncertain information delays in IoT-enabled field control networks of building automation systems

Bing Su and Shengwei Wang

Applied Energy, 2021, vol. 301, issue C, No S0306261921008989

Abstract: Distributed optimal control deployed on field control networks has gotten increasing attention with the rapid development and wide applications of the Internet of Things, including the applications in building automation. Information delays, time delays in information exchange between different devices integrated in communication networks, can affect the performance of distributed optimal control but have rarely received attention in the building automation and HVAC (heating, ventilation, and air conditioning) fields. This paper proposes a delay-tolerant control method to reduce the impacts of uncertain information delays on the performance of the distributed optimal control of HVAC systems. The proposed method reduces the impacts of information delays through synchronizing the local optimization results used for convergence determination and adaptively setting the step-size used for updating Lagrange multiplier. The purpose of synchronizing local optimization results is to reduce the impacts of information delays on accuracy of the optimization results. The purpose of setting the step-size adaptively is to reduce the impacts of information delays on the convergence rate. The computational load of the proposed method is 40 FLOPs (floating-point operations), which can be handled by typical smart sensors. Test results show that the proposed delay-tolerant control method could effectively reduce the impacts of information delays on optimization accuracy and convergence rate, thereby improving the energy performance of the distributed optimal control strategy under conditions where delays occur.

Keywords: Distributed optimal control; Delay-tolerant control method; Information delays; Internet of Things; Air-conditioning system; Building automation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008989
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008989

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117516

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008989