EconPapers    
Economics at your fingertips  
 

Energy performance analysis and optimization of a coupled adsorption and absorption cascade refrigeration system

W.D. Chen and K.J. Chua

Applied Energy, 2021, vol. 301, issue C, No S0306261921009004

Abstract: An energy cascade utilization system is an advanced technology that recoveries waste heat energy efficiently. However, research on cascade systems by utilizing waste hot water with 60–100 °C is still considerably lacking in the literature. Specifically, this paper investigates the waste heat recovery performance of a multistage coupled absorption chiller (ABC)-adsorption chiller (ADC) cascade system. The proposed ABC-ADC cascade system is capable of producing potable water and three streams of chilled water under different temperature settings. Firstly, the experimental analysis is judiciously carried out on a four-bed two-evaporator ADC subsystem prototype. Key results reveal that the ADC’s maximum specific daily water production is 10.5 m3/day/ton. Subsequently, the ABC-ADC cascade system’s performance is experimentally analysed and optimized. The achievable maximum cooling coefficient of performance (COPc) is obtained to be 0.55. Additionally, a general method is proposed to optimize the subsystem’s cooling capacity combination of the ABC-ADC cascade system in search of an optimal COPc. The results indicate that the optimized COPc can further be enhanced by around 20%. The performance efficiency of an optimized ABC-ADC cascade system incorporating a microturbine system is then investigated. Compared to the experimental ABC-ADC cascade system, the optimized system’ total coefficient of performance is demonstrated to improve by 18%. The primary energy saving ratio is also promoted from 9.8% to 18%. Moreover, 68.92% of the gas turbine’s dissipated energy is able to be recovered by the optimized ABC-ADC system. As far as application is concerned, this cascade system has been demonstrated to be superior to standalone heat-driven chillers with great commercial potential for implementation in industries where low-grade waste heat is readily available.

Keywords: Low-grade waste heat recovery; Energy cascade utilization; Adsorption chiller; Energy optimization; Combined cooling and power system (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921009004
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921009004

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117518

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921009004