EconPapers    
Economics at your fingertips  
 

A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion

Xiaojuan Han, Zuran Wang and Zixuan Wei

Applied Energy, 2021, vol. 302, issue C, No S030626192100893X

Abstract: In order to ensure the safe and stable operation of electric vehicles and energy storage systems, online monitoring of the state of health and the remaining useful life of lithium-ion batteries is the key to the health management of lithium-ion batteries. A novel approach for health management online monitoring of lithium-ion batteries based on mechanism modeling and data-driven fusion is proposed in this paper. An improved semi-empirical capacity degradation model of the lithium-ion batteries fully considering internal resistance and temperature is established. After the data sets of the lithium-ion batteries are de-noised by the wavelet packet, the parameters of the model are identified according to the genetic algorithm and a particle filter framework is designed to online update the parameters of the model. Through the fusion of the two, the remaining useful life and state of health of the lithium-ion batteries can be predicted accurately. The proposed method is verified by the battery cycle test data from the Advanced Life Cycle Engineering Center of University of Maryland and the NASA Ames Prognostics Center of Excellence, the mean absolute error and root mean square error of the remaining useful life for the lithium-ion batteries are respectively less than 20 and 25 cycles at constant temperature condition, and respectively less than 3.30 and 3.60 cycles at non-constant temperature condition. Compared with the existing methods, the proposed method has higher prediction accuracy and better fitting performance, which can provide a certain theoretical basis for the safe operation of lithium-ion batteries.

Keywords: Health management; Degradation model; Remaining useful life; State of health; Data-driven (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192100893X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:302:y:2021:i:c:s030626192100893x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117511

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:302:y:2021:i:c:s030626192100893x