Geospatial global sensitivity analysis of a heat energy service decarbonisation model of the building stock
Jonathan Chambers,
M.J.S. Zuberi,
K.N. Streicher and
Martin K. Patel
Applied Energy, 2021, vol. 302, issue C, No S0306261921009673
Abstract:
Decarbonising energy used for space heating and hot water is critical for reaching emission targets. Modelling of thermal energy decarbonisation becomes increasingly complex as additional technology options are included. Spatial aspects become increasingly important when considering heat transport, for example using district heating. This study develops a model for heating energy decarbonisation that makes use of a techno-economic model applied to a large geographic area (Western Switzerland) at high spatial resolution. Global sensitivity analysis is applied to quantify the variance characteristics of the model. Heating energy services provided by retrofits, decentralised heat pumps, and thermal networks are considered. Final energy demand reductions ranges of 70–80% and emissions reductions of 90% were found with levelized costs of providing the heat service of 0.14–0.22CHF/kWh. High sensitivities were found with respect to efficiency parameters (retrofit potentials and seasonal performance factors). The spatial distribution of costs and sensitivities was shown to be highly variable, with a strong correlation with building density. This raises important questions, notably on equitable distribution of energy transition costs.
Keywords: Geospatial; Sensitivity analysis; Heat; Decarbonisation; Building stock; Efficiency (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921009673
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:302:y:2021:i:c:s0306261921009673
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117592
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().