EconPapers    
Economics at your fingertips  
 

Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems

Akshay Ajagekar and Fengqi You

Applied Energy, 2021, vol. 303, issue C, No S030626192100996X

Abstract: Quantum computing (QC) and deep learning have shown promise of supporting transformative advances and have recently gained popularity in a wide range of areas. This paper proposes a hybrid QC-based deep learning framework for fault diagnosis of electrical power systems that combine the feature extraction capabilities of conditional restricted Boltzmann machine with an efficient classification of deep networks. Computational challenges stemming from the complexities of such deep learning models are overcome by QC-based training methodologies that effectively leverage the complementary strengths of quantum assisted learning and classical training techniques. The proposed hybrid QC-based deep learning framework is tested on a simulated electrical power system with 30 buses and wide variations of substation and transmission line faults, to demonstrate the framework’s applicability, efficiency, and generalization capabilities. High computational efficiency is enjoyed by the proposed hybrid approach in terms of computational effort required and quality of diagnosis performance over classical training methods. In addition, superior and reliable fault diagnosis performance with faster response time is achieved over state-of-the-art pattern recognition methods based on artificial neural networks (ANN) and decision trees (DT).

Keywords: Quantum computing; Deep learning; Power systems; Hybrid computing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192100996X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:303:y:2021:i:c:s030626192100996x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117628

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:303:y:2021:i:c:s030626192100996x