EconPapers    
Economics at your fingertips  
 

A methodology for optimisation of solar dish-Stirling systems size, based on the local frequency distribution of direct normal irradiance

A. Buscemi, S. Guarino, G. Ciulla and V. Lo Brano

Applied Energy, 2021, vol. 303, issue C, No S0306261921010412

Abstract: In geographical areas where direct solar irradiation levels are relatively high, concentrated solar energy systems are one of the most promising green energy technologies. Dish-Stirling systems are those that achieve the highest levels of solar-to-electric conversion efficiency, and yet they are still among the least common commercially available technologies. This paper focuses on a strategy aimed at promoting greater diffusion of dish-Stirling systems, which involves optimizing the size of the collector aperture area based on the hourly frequency distributions of beam irradiance and defining a new incentive scheme with a feed-in tariff that is variable with the installed costs of the technology. To this purpose, a new numerical model was defined and calibrated on the experimental data collected for an existing dish-Stirling plant located in Palermo (Italy). Hourly-based simulations were carried out to assess the energy performance of 6 different system configurations located on 7 sites in the central Mediterranean area using two different solar databases: Meteonorm and PVGIS. A new simplified calculation approach was also developed to simulate the dish-Stirling energy production from the hourly frequency histograms of the beam irradiance. The results reveal that an optimised dish-Stirling system can produce 70–87 MWhe/year in locations with direct irradiation varying between 2000 and 2500 kWh/(m2·year). The proposed incentive scheme would guarantee a payback time for investment in this technology of about ten years and the effect of economies of scale could lead, over the years, to a levelized cost of energy similar to that of other concentrating power systems.

Keywords: Dish-Stirling; Concentrating Solar Power; Numerical models; LCOE; Solar datasets; Incentive policies (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921010412
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:303:y:2021:i:c:s0306261921010412

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117681

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921010412