EconPapers    
Economics at your fingertips  
 

Design and control of radiant ceiling panels incorporating phase change materials for cooling applications

Andres Gallardo and Umberto Berardi

Applied Energy, 2021, vol. 304, issue C, No S0306261921010837

Abstract: Experimental and numerical studies have demonstrated that thermally activated building systems (TABS) may lead to significant energy savings. However, TABS are generally incorporated into the building during the construction phase, limiting their adoption to new buildings. To encourage the application of TABS during building refurbishments, the authors have developed a radiant ceiling panel (RCP) with macroencapsulated phase change materials (PCM). This study aims to provide the criteria to design, size, and control the newly proposed RCP-PCM system. A simplified method to size and design the RCP-PCM system for cooling applications is developed from a set of parametric dynamic simulations. At first, the thermal storage properties of the macro-encapsulated PCM were determined using the standard ASTM C1784-20. The obtained properties were then used in a whole-building simulation model validated using measurements in a small test chamber that replicates the conditions of an actual test room. The PCM panel thickness of 0.015 m and a supply water temperature of 15 ℃ showed the best results in terms of thermal comfort and effective thermal energy storage capacity. The implementation of the simplified method in a case study showed that the RCP-PCM system maintained room conditions within the specified thermal comfort range (−0.5 < PMV < 0.5) for more than 90% of the occupied periods in all of the evaluated cooling-dominated climates. Moreover, yearly-round, the PMV values never reached values higher than 0.8 or lower than −0.6, confirming the effectiveness of the proposed method for designing a RCP-PCM system. The results show that energy savings of 22% could be obtained in a very hot and humid climate using an RCP-PCM system instead of a conventional all-air system. In conclusions, this paper offers a new system to promote energy flexibility and Demand-Side Management (DSM) strategies to modulate the energy demands in retrofitted buildings.

Keywords: Thermally activated building systems; Radiant cooling panel; Thermal energy storage; PCM; Heat gains; Cooling load (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921010837
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010837

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117736

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010837