EconPapers    
Economics at your fingertips  
 

Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach

Sangyoon Lee and Dae-Hyun Choi

Applied Energy, 2021, vol. 304, issue C, No S0306261921010977

Abstract: Profit maximization of electric vehicle charging station (EVCS) operation yields an increasing investment for the deployment of EVCSs, thereby increasing the penetration of electric vehicles (EVs) and supporting high-quality charging service to EV users. However, existing model-based approaches for profit maximization of EVCSs may exhibit poor performance owing to the underutilization of massive data and inaccurate modeling of EVCS operation in a dynamic environment. Furthermore, the existing approaches can be vulnerable to adversaries that abuse private EVCS operation data for malicious purposes. To resolve these limitations, we propose a privacy-preserving distributed deep reinforcement learning (DRL) framework that maximizes the profits of multiple smart EVCSs integrated with photovoltaic and energy storage systems under a dynamic pricing strategy. In the proposed framework, DRL agents using the soft actor–critic method determine the schedules of the profitable selling price and charging/discharging energy for EVCSs. To preserve the privacy of EVCS operation data, a federated reinforcement learning method is adopted in which only the local and global neural network models of the DRL agents are exchanged between the DRL agents at the EVCSs and the global agent at the central server without sharing EVCS data. Numerical examples demonstrate the effectiveness of the proposed approach in terms of convergence of the training curve for the DRL agent, adaptive profitable selling price, energy charging and discharging, sensitivity of the selling price factor, and varying weather conditions.

Keywords: Electric vehicle charging station; Electric vehicle; Deep reinforcement learning; Federated reinforcement learning; Dynamic pricing; Profit maximization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921010977
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010977

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117754

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010977