Pricing analysis of wind power derivatives for renewable energy risk management
Takashi Kanamura,
Lasse Homann and
Marcel Prokopczuk ()
Applied Energy, 2021, vol. 304, issue C, No S0306261921011557
Abstract:
The objective of this study is to analyse the theoretical pricing of wind power derivatives, which is important for renewable energy risk management but has a problem in the pricing due to the illiquidity of the assets and to show the application of the theory to the practical implementation of the pricing. We make three contributions to the literature. First, to the best of our knowledge, we are the first to conduct a detailed econometric analysis of the wind power futures underlying, i.e., the electricity production based on windmills, resulting in strong support of seasonality and mean reversion in the logit-transformed wind power load factors. Second, after proposing a new model of wind power load factors based on the econometric findings, we analyse the theoretical prices of wind power futures and call option contracts to which the good-deal bounds pricing within an illiquid market situation is applied as well as we show the application of the theory to the practical pricing with the illiquidity. Third, our empirical pricing analysis shows that theoretical wind power futures prices derived using seasonal modelling more accurately reflect reality than those derived without seasonality compared to market observations, resulting in the importance of seasonality modelling in theoretical wind power derivatives pricing. In particular, considering that the upper and lower price boundaries represent the selling and the buying prices in the incomplete market, respectively, we show that the pricing of the short position is more affected by the seasonality than the pricing of the long position. Finally, we illustrate and discuss the practical applications of the results obtained in our study.
Keywords: Wind power; Load factor; Good-deal bounds; Futures and options; Mean reversion; Seasonality (search for similar items in EconPapers)
JEL-codes: G13 L94 Q42 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011557
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011557
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117827
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().