Short-term nodal voltage forecasting for power distribution grids: An ensemble learning approach
Yi Wang,
Leandro Von Krannichfeldt,
Thierry Zufferey and
Jean-François Toubeau
Applied Energy, 2021, vol. 304, issue C, No S0306261921011971
Abstract:
The integration of distributed energy resources (DER) complicates the operation of the power distribution grids, and the nodal voltage may violate frequently. Making accurate predictions of the nodal voltage is fundamental for voltage regulation of the distribution grid. Even though energy forecasting has been widely studied, voltage is still a rarely touched area. This paper enriches the research by proposing an ensemble approach for both deterministic and probabilistic short-term nodal voltage forecasting. Specifically, a new joint model- and data-driven feature selection is first performed to select the most relevant features for distribution grid voltage forecasting. Then, different individual forecasting models are trained using the selected features. On this basis, simple weighted averaging and quantile regression averaging approaches are applied to combine the individual models for deterministic and probabilistic forecasting, respectively. Finally, case studies are conducted on a real-world distribution grid to verify the effectiveness and superiority of the proposed method.
Keywords: Nodal voltage forecasting; Ensemble learning; Quantile regression averaging; Distribution grids; Situation awareness (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011971
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011971
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117880
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().