Three-phase optimal power flow for networked microgrids based on semidefinite programming convex relaxation
Yan Huang,
Yuntao Ju,
Kang Ma,
Michael Short,
Tao Chen,
Ruosi Zhang and
Yi Lin
Applied Energy, 2022, vol. 305, issue C, No S0306261921011107
Abstract:
Many autonomous microgrids have high penetration of distributed generation (DG) units. Optimal power flow (OPF) is necessary for the optimal dispatch of such networked microgrids (NMGs). Existing convex relaxation methods for three-phase OPF are only applicable to radial networks, not meshed networks. To overcome this limitation, we develop a semidefinite programming (SDP) convex relaxation model, which can be applied to meshed networks and also includes a model of three-phase DG units and on-load voltage regulators with different connection types. The proposed model has higher accuracy than other existing convex relaxation models and the SDP model effectively solves the OPF problem for three-phase meshed networks with satisfactory accuracy, as validated by real 6-bus, 9-bus, and 30-bus NMGs and the IEEE 123-bus test cases. In the SDP model, the convex symmetric-component of the three-phase DG model is shown to be more accurate than three-phase DG that is modelled as three single-phase DG units in three-phase unbalanced OPF. The optimal control variables obtained from the convex relaxation optimization can be used for both the final optimal dispatch strategy and the initial value of non-convex OPF to obtain the globally optimal solution efficiently.
Keywords: Networked microgrids; Semidefinite programming; Optimal power flow; Distributed generation; Meshed network (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011107
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011107
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117771
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().