Validation of European-scale simulated wind speed and wind generation time series
Juan Pablo Murcia,
Matti Juhani Koivisto,
Graziela Luzia,
Bjarke T. Olsen,
Andrea N. Hahmann,
Poul Ejnar Sørensen and
Magnus Als
Applied Energy, 2022, vol. 305, issue C, No S0306261921011296
Abstract:
This paper presents a validation of atmospheric reanalysis data sets for simulating onshore wind generation time series for large-scale energy system studies. The three reanalyses are the ERA5, the New European Wind Atlas (NEWA) and DTU’s previous generation European-level atmospheric reanalysis (EIWR). An optional scaling is applied to match the microscale mean wind speeds reported in the Global Wind Atlas version 2 (GWA2). This mean wind speed scaling is used to account for the effects of terrain on the wind speed distributions. The European wind power fleet for 2015–2018 is simulated, with commissioning of new wind power plants (WPPs) considered for each year. A generic wake model is implemented to include wake losses that are layout agnostic; the wake model captures the expected wake losses as function of wind speed given the technical characteristics of the WPP. We validate both point measurement wind speeds and generation time-series aggregated at the country-level. Wind measurements from 32 tall meteorological masts are used to validate the wind speed, while power production for four years from twelve European countries is used to validate the simulated country-level power production. Various metrics are used to rank the models according to the variables of interest: descriptive statistics, distributions, daily patterns, auto-correlation and spatial-correlation. We find that NEWA outperforms ERA5 and EIWR for the simulated wind speed, but, as expected, no model is able to fully describe the auto-correlation function of the wind speed at a single point. The mean wind speed scaling is found to be necessary to match the distribution of generation on country-level, with NEWA-GWA2 and ERA5-GWA2 showing highest accuracy and precision for simulating large-scale wind generation time-series.
Keywords: Large scale energy system; Wind energy; Atmospheric reanalysis; European; Renewable energy; Wind generation; Validation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011296
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011296
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117794
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().