Comprehensive assessment of energy conservation and CO2 emission reduction in future aluminum supply chain
Shuoshuo Tian,
Yuezhong Di,
Min Dai,
Weiqiang Chen and
Qi Zhang
Applied Energy, 2022, vol. 305, issue C, No S0306261921011314
Abstract:
Over the past decade, the global aluminum industry has undergone profound changes, particularly as a result of China emerging as a powerhouse production base, accounting for approximately 60% of global smelting capacity by the end of 2018. To explore the potential energy conservation and CO2 emission reduction of China's aluminum industry during 2010–2050, we developed a comprehensive assessment framework based on quasi-dynamic material flow analysis, energy consumption, and CO2 emission models. Four scenarios were designed to outline future energy savings and CO2 emission mitigation in China's aluminum industry. The results show that China's aluminum demand will consistently increase from 22.67 Mt in 2010 to 51.20 Mt in 2050. In the short term, China's aluminum industry cannot achieve a completely circular economy without implementing new policies. The results also indicate that the energy intensity and CO2 emissions per ton of aluminum will gradually decline under the multiple effects of technology promotion and structure adjustment. Under all four scenarios, the strengthened policy (STP) scenario has the least total energy consumption (TEC), reaching 46.57 Mtce and 24.11 Mtce in 2030 and 2050, respectively. The effect of energy conservation and emission reductions brought about by adjusting the production structure was far higher than the increasing technology penetration rate.
Keywords: Quasi-dynamic material flow; Aluminum demand; Energy conservation; CO2 emissions; Cost-effectiveness (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011314
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011314
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117796
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().