EconPapers    
Economics at your fingertips  
 

Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator

Yuxiao Zhu, Daniel W. Newbrook, Peng Dai, C.H. Kees de Groot and Ruomeng Huang

Applied Energy, 2022, vol. 305, issue C, No S030626192101134X

Abstract: The ever-increasing demand for renewable energy and zero carbon dioxide emission have been the driving force for the development of thermoelectric generators with better power generation performance. Alongside with the effort to discover thermoelectric materials with higher figure-of-merit, the geometrical and structural optimisation of thermoelectric generators are also essential for maximized power generation and efficiency. This work demonstrates for the first time the application of artificial neural network, a deep learning technique, in forward modelling the maximum power generation and efficiency of a thermoelectric generator and its application in the generator design and optimisation. After training using a dataset containing 5000 3-D finite element method based simulations, the artificial neural networks with 5 layers and 400 neurons per layer demonstrate extremely high prediction accuracy over 98% and are able to operate under both constant temperature difference and heat flux conditions while taking into account of the contact electrical resistance, surface heat transfer and other thermoelectric effects. Coupling with genetic algorithm, the trained artificial neural networks can optimise the leg height, leg width, fill factor and interconnect height of the thermoelectric generator for different operating and contact resistance conditions. With almost identical optimised values obtained, our neural networks can realise geometrical optimisation within 40 s for each operating condition, which is averagely over 1,000 times faster than the optimisation performed by finite element method. The up-front computational time for the neural network can be recovered when more than 2 optimisations are needed. The successful application of this data-driven approach in this work clearly represents a new and cost-effective avenue for conducting system level design and optimisation of thermoelectric generators and other energy harvesting technologies.

Keywords: Thermoelectric generator; Optimisation; Artificial neural network; Genetic algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192101134X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s030626192101134x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117800

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:305:y:2022:i:c:s030626192101134x