EconPapers    
Economics at your fingertips  
 

Rapid ultracapacitor life prediction with a convolutional neural network

Chenxu Wang, Rui Xiong, Jinpeng Tian, Jiahuan Lu and Chengming Zhang

Applied Energy, 2022, vol. 305, issue C, No S0306261921011491

Abstract: Accurate and rapid prediction of the lifetime is essential for accelerating the application of ultracapacitors. To overcome the large inconsistencies in the lifetime of ultracapacitors, an end-to-end remaining useful life (RUL) prediction method based on the convolutional neural network (CNN) is proposed. It directly establishes the mapping between the charging and discharging data collected within a few consecutive cycles and the corresponding remaining useful life. It learns many ageing features from limited raw data without any expert knowledge. While improving the prediction accuracy of the RUL, the required test time drops greatly. Validation results based on 113 ultracapacitors demonstrate that our method can accurately predict RUL by using the data within 5 consecutive cycles collected at any ageing stage, and the root mean square error is 501 cycles. Our method demonstrates higher accuracy compared with conventional feature-based prediction methods, while required input data are sharply reduced. Such 5-cycle testing can be conducted within 15 min to collect enough data for RUL prediction. Our work highlights the promise of data-driven approaches to predict the degradation of energy storage devices.

Keywords: Ultracapacitor; Remaining useful life; Convolutional neural network; End-to-end prediction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011491
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011491

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117819

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011491