EconPapers    
Economics at your fingertips  
 

A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism

Gang Miao, Shitong Fang, Suo Wang and Shengxi Zhou

Applied Energy, 2022, vol. 305, issue C, No S0306261921011636

Abstract: Energy harvesting from rotational motion, such as vehicle tires and rotational devices, remains a challenge because of the difficulty of balancing the harvesting frequency range and the power-generation density and efficiency. Traditional energy harvesters using the mechanism of magnetic plucking and piezoelectric conversion cannot overcome the inherent disadvantages of the output power and the strictness of the application conditions. In this study, a low-frequency rotational electromagnetic energy harvester using a nonlinear magnetic plucking configuration is proposed. Using the novel structure to pluck a cylindroid generating magnet in each rotational motion, the resetting effect provides a new way to stabilize the output voltage and improve the energy harvesting performance. Two design factors for controlling the resetting effect were studied theoretically and experimentally. The finite element method based on the Maxwell stress tensor not only helps in understanding the magnetic field density distribution in the energy harvesting process but also reveals the resetting mechanism. Simulating a vehicle tire with a diameter of 0.6 m rotating at a speed of approximately 20 km/h, it was experimentally validated that the maximum average output power across all the rotating frequencies (0.5–5.0 Hz) reached 13.13 mW under certain excitation conditions in the experiment, which is increased by 215.9% compared with the harvester without the resetting effect. The great performance under different application conditions demonstrated that the proposed electromagnetic energy harvester has a great potential in energy harvesting from low-frequency rotational motions.

Keywords: Electromagnetic; Energy harvester; Magnetic plucking; Rotational motion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011636
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011636

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117838

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011636