EconPapers    
Economics at your fingertips  
 

Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression

Quan Zhou, Yanfei Li, Dezong Zhao, Ji Li, Huw Williams, Hongming Xu and Fuwu Yan

Applied Energy, 2022, vol. 305, issue C, No S0306261921011776

Abstract: Electric vehicles, including plug-in hybrids, are important for achieving net-zero emission and will dominate road transportation in the future. Energy management, which optimizes the onboard energy usage, is a critical functionality of electric vehicles. It is usually developed following the model-based routine, which is conventionally costly and time-consuming and is hard to meet the increasing market competition in the digital era. To reduce the development workload for the energy management controller, this paper studies an innovative transfer learning routine. A new transferable representation control model is proposed by incorporating two promising artificial intelligence technologies, adaptive neural fuzzy inference system and Gaussian process regression, where the former applies k-fold cross valudation to build a neural fuzzy system for real-time implementation of offline optimization result, and the later connects the neural fuzzy system with a ‘deeper’ architecture to transfer the offline optimization knowledge learnt at source domain to new target domains. By introducing a concept of control utility that evaluates vehicle energy efficiency with a penalty on usage of battery energy, experimental evaluations based on the hardware-in-the-loop testing platform are conducted. Competitive real-time control ultility values (as much as 90% of offline benchmarking results) can be achieved by the proposed control method. They are over 27% higher than that achieved by the neural-network-based model.

Keywords: Energy management; Hybrid vehicle; Adaptive neuro fuzzy inference; Gaussian process regression; Transfer learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011776
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011776

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117853

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011776