Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design
Cong Yin,
Yating Song,
Meiru Liu,
Yan Gao,
Kai Li,
Zemin Qiao and
Hao Tang
Applied Energy, 2022, vol. 305, issue C, No S0306261921012083
Abstract:
The proton exchange membrane fuel cell stack based on metallic bipolar plate is promising in fuel cell vehicle applications due to its compact design and high power density. As the flow field design is critical to the fuel cell performance, in this work, the novel wavy flow fields designed in metallic bipolar plate with inverse phase for anode and cathode are investigated by both experiment and simulation. Validated by the test of 5-cell short stack with 315 cm2 active area, a three-dimensional non-isothermal model is developed to investigate the multi-physical processes and internal parameter uniformities of the presented stack design. The in-plane parameter distributions of current density, water content and reactant concentrations basically follow the cathode wavy flow field geometry rather than the anode one, while the temperature distribution presents multiple elliptical island shaped patterns according to the intercrossed wavy flow fields. The two-layered intercrossed wavy coolant channels enhance the thermal convection of the coolant which induces interlaminar secondary flow with 25% velocity magnitude of the primary one. The findings of this work are beneficial to understand the internal behavior of the fuel cell stack and optimize the flow field design for enhanced performance and heat dissipation capability.
Keywords: Fuel cell stack design; Metallic bipolar plate; Inverse wavy flow field; Three-dimensional model; Secondary flow; Thermal behavior (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921012083
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012083
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117893
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().