Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler
Jingyuan Xu,
Jianying Hu,
Ercang Luo,
Jiangfeng Hu,
Limin Zhang and
Simone Hochgreb
Applied Energy, 2022, vol. 305, issue C, No S0306261921012174
Abstract:
This work investigates a novel heat-driven multi-stage thermoacoustic cooler that can satisfy cooling requirements in the applications of natural gas liquefaction and high-temperature superconductivity. The proposed system consists of a compressor, multiple thermoacoustic units (engines and coolers) coupled by piston-cylinder assemblies. The acoustic power input by the compressor is successively multiplied in the thermoacoustic engine units, and the amplified acoustic power is then consumed to produce cooling power in the thermoacoustic cooler units. The proposed system overcomes the limitations of the traditional thermoacoustic systems owing to high efficiency, compact size, and ease of control. Analyses are first performed to explore the influence of the number of stages. The design method of the pistons is presented based on acoustic impedance matching principle.Based on the optimized system, simulations are then conducted to investigate the axial distribution of the key parameters, which can explain the reason for improved thermodynamic performance. At heating and cooling temperatures of 873 K and 130 K, the system achieves a cooling power of 2.1 kW and a thermal-to-cooling relative Carnot efficiency of 23%. This represents significant increases by over 60% in efficiency and 80% in cooling capacity when compared to existing systems. Simulations further demonstrate how controlling the input acoustic power and frequency via the compressor enables control of the system under various conditions. Further discussions are made considering a potential combined cooling and power system, indicating an overall thermal-cooling-electricity efficiency of 34% without any external electric power required for the compressor.
Keywords: Thermoacoustic; Stirling; Cooler; Engine; Heat driven; Combined cooling and power (CCP) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921012174
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012174
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117904
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().