EconPapers    
Economics at your fingertips  
 

Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm

Jianzhou Wang, Linyue Zhang and Zhiwu Li

Applied Energy, 2022, vol. 305, issue C, No S030626192101223X

Abstract: Electricity load prediction is of great significance to the development of the power market and stable operation of power systems. In recent years, scholars in this field have only considered point forecasting, which ignores the inevitable prediction bias and uncertain information. To fill this gap, this study proposes an interval prediction system consisting of an advanced data reconstruction strategy, a multi-objective optimization algorithm based on the theory of non-negative constraints, and an outstanding interval forecasting model fitted by the predicted fluctuation characteristics. Moreover, this study theoretically proves that the weight assigned by the optimization algorithm is the Pareto optimal solution. Empirical data with 30 min intervals from Queensland, Australia are selected as samples for research. The results not only demonstrate the superiority of the proposed model but also provide effective technical support for power grid operation and dispatch by quantifying changes in the prediction results caused by uncertainties.

Keywords: Electricity load; Data reconstruction strategy; Multi-objective optimization algorithm; Interval forecasting; Hybrid model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192101223X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s030626192101223x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117911

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:305:y:2022:i:c:s030626192101223x