Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure
Yong Cheng,
Chen Xi,
Saishuai Dai,
Chunyan Ji,
Maurizio Collu,
Mingxin Li,
Zhiming Yuan and
Atilla Incecik
Applied Energy, 2022, vol. 306, issue PA, No S0306261921012630
Abstract:
Combing floating breakwaters with wave energy converters (WECs) and integrating them into very large floating structure (VLFS) can provide a viable option to explore economically offshore wave energy resources and simultaneously to protect marine structures. In this paper, the time-domain numerical model is developed based on the modal expansion theory with nonlinear consideration to optimize the design and layout of an integrated system of modular WEC-type floating breakwaters and a pontoon-type VLFS, with emphasis on the effects of the WEC geometric size and shape, the WEC-VLFS gap distance and the wave nonlinearity. A hybrid finite element (FE)-boundary element (BE) method is presented to simulate the structures as Mindlin plate elements and the water waves as fully nonlinear potential flow boundaries, respectively. Breakwaters as WECs with deeper draft and larger length are found to more fully interact in phase with long-period waves, and receive more wave energy extraction and larger hydroelastic response reduction. The addition of breakwaters has a favorable effect on the wave energy extraction, but a destructive effect on the hydroelastic reduction. Importantly, wave resonance induced by the multi-modal scattering waves in the WEC-VLFS gap leads to multiple peaks of the power capture efficiency. Compared to the symmetric-shape WECs, the asymmetric-shape WECs strengthen the gap resonant effect, which improves both the wave energy extraction and hydroelastic reduction for a broader frequency bandwidth. The findings of this study indicate the synergistic benefits of wave energy exploitation and transmitted wave attenuation at the fore-end of VLFSs.
Keywords: Floating breakwater; Wave energy converter; Very large floating structure; Power capture efficiency; Hydroelastic response reduction; Hybrid finite element–boundary element method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921012630
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012630
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117953
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().