A novel modal emission modelling approach and its application with on-road emission measurements
An Wang,
Ran Tu,
Junshi Xu,
Zhiqiang Zhai and
Marianne Hatzopoulou
Applied Energy, 2022, vol. 306, issue PA, No S0306261921012733
Abstract:
Modal emission models describe vehicular emissions with stratified vehicle kinetic conditions or engine parameters. They are widely adopted in regulatory applications in North America and Europe to estimate emissions and energy consumption from mobile sources. However, challenges exist in the development of modal bins, especially that previous approaches rely on manual adjustment and tuning, which increase the propensity to emission misclassification. This study proposes a new approach to generate modal bins, which overcomes the limitations of previous studies. It uses a Greedy algorithm to define optimal mode boundaries and improve model robustness. The model is calibrated with emission data from a portable emission monitoring system and validated against an independent dataset. Our modelling approach can effectively reflect carbon dioxide (CO2) emissions in steady and aggressive driving conditions with errors lower than 7% at the trip level. The introduction of engine parameters is found to improve model prediction for carbon monoxide (CO) and nitrogen oxides (NOx) by about 30% compared with the models relying on external variables.
Keywords: Mobile emission source; Modal emission modelling; Operating emissions; Portable emissions measurement system; Real driving emissions; Greedy algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921012733
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012733
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117967
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().