EconPapers    
Economics at your fingertips  
 

Flexible multijunction solar cells embedded inside smart dust modules for outdoor applications to Smart Grids

Cheng-Yi Liu, Chun-Kai Huang, Yen-Yu Huang, Kun-Chieh Chang, Kun-Lin Yu, Chien-Hung Chiang, Chun-Guey Wu, Shih-Chang Lee, Wei-Yu Yen, Jinn-Kong Sheu and Jin-Wei Shi

Applied Energy, 2022, vol. 306, issue PA, No S0306261921012769

Abstract: The functioning of self-sustaining smart dust modules plays a vital role in the development of the smart electric grid. In this work, we first devise a flexible triple-junction III-V solar cell embedded inside a smart dust module suitable for outdoor applications. These flexible solar cells are demonstrated to have a bending radius of over 5 cm and exhibit a conversion efficiency of around 25% under air mass 1.5G (1 sun) conditions. Under normal incidence of sunlight at the same conditions, our cell with its small active area of 0.4 cm2 can generate around 10.1 mW of electrical power. This is sufficient to meet the direct current power consumption (∼5.4 mW) requirements of our dust module, which includes a temperature/moisture sensor, a 3-axis linear accelerometer, and a Bluetooth chip. In comparison to a silicon-based flexible solar cell, our demonstrated III-V solar cell is smaller, requiring approximately 40% of the area to produce the same electrical power output. Our dust module is controlled using a self-developed Android application installed on a smartphone and can sustain continuous-wave operation for data collection and wireless transmission even when the incident angle of the sunlight reaches 75°. Pulse-mode operation is still possible even in the case of nearly 90° illuminations (for example, at sunset). Overall, the measurement results for this flexible solar cell are promising, allowing for further reduction in the size of a self-sustaining smart dust module with improved reliability. These advantages could facilitate development of the next generation of energy saving smart electric grids.

Keywords: Flexible solar cells; Strain relaxation; Self-sustained smart dust module; Environmental sensing; Outdoor IoT applications (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921012769
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012769

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117970

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012769